4.6 Article

On the role of the H2 ortho:para ratio in gravitational collapse during star formation

期刊

ASTRONOMY & ASTROPHYSICS
卷 563, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201322855

关键词

equation of state; molecular processes; stars: formation; hydrodynamics; radiative transfer

资金

  1. European Research Council under European Community [247060]
  2. Japan Society for the Promotion of Science (JSPS)
  3. European Research Council (ERC) [247060] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Context. Hydrogen molecules (H-2) come in two forms, ortho- and para-hydrogen, corresponding to the two different spin configurations of the two hydrogen atoms. The relative abundances of the two flavours in the interstellar medium are still very uncertain, and this abundance ratio has a significant impact on the thermal properties of the gas. In the context of star formation, theoretical studies have recently adopted two different strategies when considering the ortho: para ratio (OPR) of H-2 molecules. The first considers the OPR to be frozen at 3: 1, while the second assumes that the species are in thermal equilibrium at all temperatures. Aims. As the OPR potentially affects the protostellar cores that form as a result of the gravitational collapse of a dense molecular cloud, the aim of this paper is to quantify precisely what role the choice of OPR plays in the properties and evolution of the cores. Methods. We used two different ideal gas equations of state for a hydrogen and helium mix in a radiation hydrodynamics code to simulate the collapse of a dense cloud and the formation of the first and second Larson cores. The first equation of state uses a fixed OPR of 3:1, and the second assumes thermal equilibrium. Results. The OPR was found to markedly affect the evolution of the first core. Systems in simulations using an equilibrium ratio collapse faster at early times and show noticeable oscillations around hydrostatic equilibrium, to the point where the core expands for a short time right after its formation, before resuming its contraction. In the case of a fixed 3:1 OPR, the core's evolution is a lot smoother. The OPR was, however, found to have little impact on the size, mass, and radius of the two Larson cores. Conclusions. It is not clear from observational or theoretical studies of OPR in molecular clouds which OPR should be used in the context of star formation. Our simulations show that if one is solely interested in the final properties of the cores when they are formed, it does not matter which OPR is used. On the other hand, if one's focus lies primarily on the evolution of the first core, the choice of OPR becomes important.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据