4.5 Article

Intestinal mucins from cystic fibrosis mice show increased fucosylation due to an induced Fucα1-2 glycosyltransferase

期刊

BIOCHEMICAL JOURNAL
卷 367, 期 -, 页码 609-616

出版社

PORTLAND PRESS
DOI: 10.1042/BJ20020371

关键词

MS; O-glycosylation

资金

  1. NHLBI NIH HHS [T32 HL07897] Funding Source: Medline

向作者/读者索取更多资源

In gene-targeted mouse models for cystic fibrosis (CF), the disease is mainly manifested by mucus obstruction in the intestine. To explore the mucus composition, mucins insoluble and soluble in 6 M guanidinium chloride were purified by three rounds of isopycnic ultracentrifugation from the small and large intestines of CF mice (Cftrm(1UNC)/Cftr(m1UNC)) and compared with wildtype mice. The amino acid composition was typical of that for mucins and showed increased amounts of the insoluble (2.5-fold increase) and soluble (7-fold increase) mucins in the small intestine of the CF mice compared with wild-type mice. Mucins from the large intestine of both wild-type and CF mice showed a high but constant level of fucosylation. In contrast, the insoluble and soluble mucins of the small intestine in CF mice revealed a large increase in fucose, whereas those of wild-type mice contained only small amounts of fucose. This increased fucosylation was analysed by releasing the O-linked oligosaccharides followed by GC-MS, NMR spectroscopy revealed that the increased fucosylation was due to an increased expression of blood group H epitopes (Fucalpha1-2Gal-). Northern-blot analysis, using a probe for the murine Fucalpha1-2 fucosyltransferase (Fut2), showed an upregulation of this mRNA in the small intestine of the CF mice, suggesting that this enzyme is responsible for the observed increase in blood group H-type glycosylation. The reason for this up-regulation could be a direct or indirect effect of a nonfunctional CF transmembrane conductance regulator (CFTR) caused by the absence of CFTR channel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据