4.6 Article

Planck 2013 results. XII. Diffuse component separation

期刊

ASTRONOMY & ASTROPHYSICS
卷 571, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201321580

关键词

cosmic background radiation

资金

  1. ESA
  2. CNES
  3. CNRS/INSU-IN2P3-INP (France)
  4. ASI
  5. CNR
  6. INAF (Italy)
  7. NASA
  8. DoE (USA)
  9. STFC
  10. UKSA (UK)
  11. CSIC
  12. MICINN
  13. JA
  14. RES (Spain)
  15. Tekes
  16. AoF
  17. CSC (Finland)
  18. DLR
  19. MPG (Germany)
  20. CSA (Canada)
  21. DTU Space (Denmark)
  22. SER/SSO (Switzerland)
  23. RCN (Norway)
  24. SFI (Ireland)
  25. FCT/MCTES (Portugal)
  26. PRACE (EU)
  27. Advanced Computing and e-Science team at IFCA
  28. Science and Technology Facilities Council [ST/K00333X/1, ST/K002805/1, ST/L000393/1, ST/K000985/1, ST/L001314/1, ST/J005673/1, ST/I002006/1, ST/K002821/1, ST/L000768/1, ST/F010885/1, ST/K004131/1, ST/K002899/1, ST/K00106X/1, ST/H008586/1, ST/J000388/1, ST/I005765/1, ST/K001051/1, ST/J001368/1] Funding Source: researchfish
  29. UK Space Agency [ST/M007685/1, ST/H001239/1, ST/G003874/1, ST/H001212/1, ST/J004812/1, ST/K003674/1] Funding Source: researchfish

向作者/读者索取更多资源

Planck has produced detailed all-sky observations over nine frequency bands between 30 and 857 GHz. These observations allow robust reconstruction of the primordial cosmic microwave background (CMB) temperature fluctuations over nearly the full sky, as well as new constraints on Galactic foregrounds, including thermal dust and line emission from molecular carbon monoxide (CO). This paper describes the component separation framework adopted by Planck for many cosmological analyses, including CMB power spectrum determination and likelihood construction on large angular scales, studies of primordial non-Gaussianity and statistical isotropy, the integrated Sachs-Wolfe effect, gravitational lensing, and searches for topological defects. We test four foreground-cleaned CMB maps derived using qualitatively different component separation algorithms. The quality of our reconstructions is evaluated through detailed simulations and internal comparisons, and shown through various tests to be internally consistent and robust for CMB power spectrum and cosmological parameter estimation up to l = 2000. The parameter constraints on ACDM cosmologies derived from these maps are consistent with those presented in the cross-spectrum based Planck likelihood analysis. We choose two of the CMB maps for specific scientific goals. We also present maps and frequency spectra of the Galactic low-frequency, CO, and thermal dust emission. The component maps are found to provide a faithful representation of the sky, as evaluated by simulations, with the largest bias seen in the CO component at 3%. For the low-frequency component, the spectral index varies widely over the sky, ranging from about beta = 4 to -2. Considering both morphology and prior knowledge of the low frequency components, the index map allows us to associate a steep spectral index (beta < -3.2) with strong anomalous microwave emission, corresponding to a spinning dust spectrum peaking below 20 GHz, a flat index of beta > -2.3 with strong free-free emission, and intermediate values with synchrotron emission.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据