4.7 Article

Dynamic nonlinearity in large-scale dynamos with shear

期刊

ASTROPHYSICAL JOURNAL
卷 579, 期 1, 页码 359-373

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/342705

关键词

magnetic fields; MHD; turbulence

向作者/读者索取更多资源

We supplement the mean field dynamo growth equation with the total magnetic helicity evolution equation. This provides an explicitly time-dependent model for alpha-quenching in dynamo theory. For dynamos without shear, this approach accounts for the observed large-scale field growth and saturation in numerical simulations. After a significant kinematic phase, the dynamo is resistively quenched, i.e., the saturation time depends on the microscopic resistivity. This is independent of whether or not the turbulent diffusivity is resistively quenched. We find that the approach is also successful for dynamos that include shear and exhibit migratory waves ( cycles). In this case, however, whether or not the cycle period remains of the order of the dynamical timescale at large magnetic Reynolds numbers does depend on how the turbulent magnetic diffusivity quenches. Since this is unconstrained by magnetic helicity conservation, the diffusivity is currently an input parameter. Comparison with current numerical experiments suggests a turbulent diffusivity that depends only weakly on the magnetic Reynolds number, but higher resolution simulations are needed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据