4.6 Article

On the use of the Fourier transform to determine the projected rotational velocity of line-profile variable B stars

期刊

ASTRONOMY & ASTROPHYSICS
卷 569, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201424012

关键词

line: profiles; techniques: spectroscopic; stars: massive; stars: rotation; stars: oscillations; stars: evolution

资金

  1. Francqui Foundation of Belgium
  2. European Research Council under the European Community [227224]
  3. Spanish Ministry of Economy and Competitiveness (MINECO) [AYA2010-21697-C05-04, Severo Ochoa SEV-2011-0187]
  4. Canary Islands Government [PID2010119]

向作者/读者索取更多资源

Context. The Fourier transform method is a popular tool for deriving the rotational velocities of stars from their spectral line profiles. However, its domain of validity does not include line-profile variables with time-dependent profiles. Aims. We investigate the performance of the method for such cases, by interpreting the line-profile variations of spotted B stars and of pulsating B stars, as if their spectral lines were caused by uniform surface rotation along with macroturbulence. Methods. We perform time-series analysis and harmonic least-squares fitting of various line diagnostics and of the outcome of several implementations of the Fourier transform method. Results. We find that the projected rotational velocities derived from the Fourier transform vary appreciably during the pulsation cycle whenever the pulsational and rotational velocity fields have similar magnitudes. The macroturbulent velocities derived while ignoring the pulsations can vary by tens of km s(-1) during the pulsation cycle. The temporal behaviour of the deduced rotational and macroturbulent velocities are in antiphase with each other. The rotational velocity is in phase with the second moment of the line profiles. Conclusions. The application of the Fourier method to stars with considerable pulsational line broadening may lead to an appreciable spread in the values of the rotation velocity, and, by implication, of the deduced value of the macroturbulence. These two quantities should therefore not be derived from single snapshot spectra if the aim is to use them as a solid diagnostic evaluating stellar evolution models of slow-to-moderate rotators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据