4.5 Article

Real-time autoshimming for echo planar timecourse imaging

期刊

MAGNETIC RESONANCE IN MEDICINE
卷 48, 期 5, 页码 771-780

出版社

JOHN WILEY & SONS INC
DOI: 10.1002/mrm.10259

关键词

functional magnetic resonance imaging; navigator echoes; motion correction; EPI artifact; real-time MRI; B-0 stability

资金

  1. NCI NIH HHS [CA73691, CA37993] Funding Source: Medline
  2. NIA NIH HHS [AG19142] Funding Source: Medline

向作者/读者索取更多资源

Head motion within an applied magnetic field alters the effective shim within the brain, causing geometric distortions in echo planar imaging (EPI). Even if subtle, change in shim can lead to artifactual signal changes in timecourse EPI acquisitions, which are typically performed for functional MRI (fMRI) or diffusion tensor imaging. Magnetic field maps acquired before and after head motions of clinically realistic magnitude indicate that motion-induced changes in magnetic field may cause translations exceeding 3 mm in the phase-encoding direction of the EPI images. The field maps also demonstrate a trend toward linear variations in shim changes as a function of position within the head, suggesting that a real-time, first-order correction may compensate for motion-induced changes in magnetic field. This article presents a navigator pulse sequence and processing method, termed a shim NAV, for real-time detection of linear shim changes, and a shim-compensated EPI pulse sequence for dynamic correction of linear shim changes. In vivo and phantom experiments demonstrate the detection accuracy of shim NAVs in the presence of applied gradient shims. Phantom experiments demonstrate reduction of geometric distortion and image artifact using shim-compensated EPI in the presence of applied gradient shims. In vivo experiments with intentional inter-image subject motion demonstrate improved alignment of timecourse EPI images when using the shim NAV-detected values to update the shim-compensated EPI acquisition in real time. (C) 2002 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据