3.8 Article

Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants

期刊

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH
卷 62, 期 2, 页码 175-184

出版社

JOHN WILEY & SONS INC
DOI: 10.1002/jbm.10270

关键词

magnesium ions; osteoblasts; adhesion; integrins; matrix proteins; orthopaedic implants

向作者/读者索取更多资源

Poor cell adhesion to orthopaedic and dental implants may result in implant failure. Cellular adhesion to biomaterial surfaces primarily is mediated by integrins, which act as signal transduction and adhesion proteins. Because integrin function depends on divalent cations, we investigated the effect of magnesium ions modified bioceramic substrata (Al2O3-Mg2+) on human bone-derived cell (HBDC) adhesion, integrin expression, and activation of intracellular signalling molecules. Immunohistochemistry, flow cytometry, cell adhesion, cell adhesion blocking, and Western blotting assays were used. Our findings demonstrated that adhesion of HBDC to Al2O3-Mg2+ was increased compared to on the Mg2+-free Al2O3. Furthermore, HBDC adhesion decreased significantly when the fibronectin receptor alpha5beta1-and beta1-integrins were blocked by functional blocking antibodies. HBDC grown on the Mg2+-modified bioceramic expressed significantly enhanced levels of beta1-, alpha5beta1-, and alpha3beta1-integrins receptors compared to those grown on the native unmodified Al2O3. Tyrosine phosphorylation of intracellular integrin-dependent signalling proteins as well as the expression of key signalling protein Shc isoforms (p46, p52, p66), focal adhesion kinase, and extracellular matrix protein collagen type I were significantly enhanced when HBDC were grown on Al2O3-Mg2+ compared to the native Al2O3. We conclude that cell adhesion to biomaterial surfaces is probably mediated by alpha5beta1- and beta1-integrin. Cation-promoted cell adhesion depends on 5beta1- and beta1-integrins associated signal transduction pathways involving the key signalling protein Shc and results also in enhanced gene expression of extracellular matrix proteins. Therefore, Mg2+ supplementation of bioceramic substrata may be a promising way to improve integration of implants in orthopaedic and dental surgery. (C) 2002 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据