4.5 Article

A new energy source for organic synthesis in Europa's surface ice

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2002JE001841

关键词

organic synthesis; energy source; meteorite impacts; ice; Europa

向作者/读者索取更多资源

[1] Colored regions on Jupiter's satellite Europa and other icy bodies in the outer solar system may be contaminated by organic macromolecular solid material that is produced when surface ices are exposed to electrical energy. Hypervelocity meteorite impacts and fracture may release tidal and tectonic stresses in icy crusts in the form of electrical discharges, which provide the energy for in situ synthesis of the organic solids. We report for the first time here on measurements of electrical discharge, light emission, and magnetic phenomena in hypervelocity impacts into ice with small iron projectiles having velocities similar to5 km s(-1). In these experiments, part of the impacting projectile's kinetic energy is converted into electrical potential, while the mechanical disruption of the impact also causes the release of stress energy as light, heat, and electrical and magnetic fields as secondary emissions. These new energy sources described here suggest that the dark material in the area of impact craters may be solid phase, complex organic material called tholin, generated from the energy of the impacts. The morphology of Europa's impact craters is suggestive of fluidized colored material welling up from the fracture zone, probably during crater formation, but possibly later. Large pools of liquid water might persist under the meteorite crater for thousands of years [Thomson and Sagan, 1992], with the potential for prebiotic chemistry to take place at an accelerated rate due to energy pumped in from the secondary emissions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据