4.6 Article

Ion-neutral friction and accretion-driven turbulence in self-gravitating filaments

期刊

ASTRONOMY & ASTROPHYSICS
卷 560, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201321761

关键词

turbulence; stars: formation; ISM: structure; magnetic fields

资金

  1. Agence National pour la Recherche through the COSMIS project
  2. European Research Council under the European Community [306483, 291294]
  3. European Research Council (ERC) [306483] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Recent Herschel observations have confirmed that filaments are ubiquitous in molecular clouds and suggest, that irrespective of the column density, there is a characteristic width of about 0.1 pc whose physical origin remains unclear. We develop an analytical model that can be applied to self-gravitating accreting filaments. It is based on the one hand on the virial equilibrium of the central part of the filament and on the other hand on the energy balance between the turbulence driven by accretion onto the filament and dissipation. We consider two dissipation mechanisms, the turbulent cascade and the ion-neutral friction. Our model predicts that the width of the inner part of the filament is almost independent of the column density and leads to values comparable to what is inferred observationally if dissipation is due to ion-neutral friction. On the contrary, turbulent dissipation leads to a structure that is bigger and depends significantly on the column density. Our model provides a reasonable physical explanation which could explain the observed filament width when they are self-gravitating. It predicts the correct order or magnitude though hampered by some uncertainties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据