4.6 Article

The role of cold gas and environment on the stellar mass-metallicity relation of nearby galaxies

期刊

ASTRONOMY & ASTROPHYSICS
卷 550, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201218822

关键词

galaxies: evolution; galaxies: spiral; cosmology: observations

资金

  1. Kavli Fellowship
  2. European Community's Seventh Framework Programme (/FP7/2007-2013/) [229517]
  3. NASA
  4. NSF
  5. GALEX mission
  6. California Institute of Technology

向作者/读者索取更多资源

We investigate the relationship between stellar mass, metallicity and gas content for a magnitude-and volume-limited sample of 260 nearby late-type galaxies in different environments, from isolated galaxies to Virgo cluster members. We derive oxygen abundance estimates using new integrated, drift-scan optical spectroscopy and the base metallicity calibrations of Kewley & Ellison (2008, ApJ, 681, 1183). Combining these measurements with ultraviolet to near-infrared photometry and Hi 21 cm line observations, we examine the relations between stellar mass, metallicity, gas mass fraction and star formation rate. We find that, at fixed stellar mass, galaxies with lower gas fractions typically also possess higher oxygen abundances. We also observe a relationship between gas fraction and metal content, whereby gas-poor galaxies are typically more metal-rich, and demonstrate that the removal of gas from the outskirts of spirals may increase the observed average metallicity by similar to 0.1 dex. Although some cluster galaxies are gas-deficient objects, statistically the stellar-mass metallicity relation is nearly invariant to the environment, in agreement with recent studies. These results indicate that internal evolutionary processes, rather than environmental effects, play a key role in shaping the stellar mass-metallicity relation. In addition, we present metallicity estimates based on observations of 478 nearby galaxies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据