4.6 Article

The VIMOS Public Extragalactic Redshift Survey (VIPERS) Luminosity and stellar mass dependence of galaxy clustering at 0.5 < z < 1.1

期刊

ASTRONOMY & ASTROPHYSICS
卷 557, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201321476

关键词

galaxies: distances and redshifts; galaxies: evolution; galaxies: statistics; cosmology: observations; large-scale structure of Universe

资金

  1. INAF through PRIN
  2. European Research Council through the Darklight ERC Advanced Research Grant [291521]
  3. STFC [ST/J500665/1, ST/J001422/1, ST/K00090X/1] Funding Source: UKRI
  4. Science and Technology Facilities Council [ST/J500665/1, ST/J001422/1, ST/K00090X/1] Funding Source: researchfish
  5. Grants-in-Aid for Scientific Research [11F01802] Funding Source: KAKEN

向作者/读者索取更多资源

Aims. We investigate the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 0.5 < z < 1.1, using the first similar to 55 000 redshifts from the VIMOS Public Extragalactic Redshift Survey (VIPERS). Methods. We measured the redshift-space two-point correlation functions (2PCF), xi(s) and xi(r(p), pi), and the projected correlation function, omega(p)(rp), in samples covering different ranges of B-band absolute magnitudes and stellar masses. We considered both threshold and binned galaxy samples, with median B-band absolute magnitudes - 21.6 less than or similar to M-B - 5 log (h) less than or similar to - 19.5 and median stellar masses 9.8 less than or similar to log (M-* [ h(-2) M-circle dot])less than or similar to 10.7. We assessed the real-space clustering in the data from the projected correlation function, which we model as a power law in the range 0.2 < rp[ h(-1) Mpc] < 20. Finally, we estimated the galaxy bias as a function of luminosity, stellar mass, and redshift, assuming a flat. cold dark matter model to derive the dark matter 2PCF. Results. We provide the best-fit parameters of the power-law model assumed for the real-space 2PCF - the correlation length, r(0), and the slope, gamma-as well as the linear bias parameter, as a function of the B-band absolute magnitude, stellar mass, and redshift. We confirm and provide the tightest constraints on the dependence of clustering on luminosity at 0.5 < z < 1.1. We prove the complexity of comparing the clustering dependence on stellar mass from samples that are originally flux-limited and discuss the possible origin of the observed discrepancies. Overall, our measurements provide stronger constraints on galaxy formation models, which are now required to match, in addition to local observations, the clustering evolution measured by VIPERS galaxies between z = 0.5 and z = 1.1 for a broad range of luminosities and stellar masses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据