4.8 Article

Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells

期刊

NATURE
卷 420, 期 6911, 页码 93-98

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature01125

关键词

-

向作者/读者索取更多资源

Double-strand breaks occur during DNA replication and are also induced by ionizing radiation. There are at least two pathways which can repair such breaks: non-homologous end joining and homologous recombination (HR). Although these pathways are essentially independent of one another, it is possible that the proteins Mre11, Rad50 and Xrs2 are involved in both pathways in Saccharomyces cerevisiae(1). In vertebrate cells, little is known about the exact function of the Mre11-Rad50-Nbs1 complex in the repair of double-strand breaks because Mre11-andRad50-null mutations are lethal(2). Here we show that Nbs1 is essential for HR-mediated repair in higher vertebrate cells. The disruption of Nbs1 reduces gene conversion and sister chromatid exchanges, similar to other HR-deficient mutants(3). In fact, a site-specific double-strand break repair assay showed a notable reduction of HR events following generation of such breaks in Nbs1-disrupted cells. The rare recombinants observed in the Nbs1-disrupted cells were frequently found to have aberrant structures, which possibly arise from unusual crossover events, suggesting that the Nbs1 complex might be required to process recombination intermediates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据