4.6 Article

Roles of Mcm7 and Mcm4 subunits in the DNA helicase activity of the mouse Mcm4/6/7 complex

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 45, 页码 42471-42479

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M205769200

关键词

-

向作者/读者索取更多资源

Mcm, which is composed of six structurally related subunits (Mcm2-7), is essential for eukaryotic DNA replication. A subassembly of Mcm, the Mcm4/6/7 doubletrimeric complex, possesses DNA helicase activity, and it has been proposed that Mcm may function as a replicative helicase at replication forks. We show here that conserved ATPase motifs of Mcm7 are essential for ATPase and DNA helicase activities of the Mcm4/6/7 complex. Because uncomplexed Mcm7 displayed neither ATPase nor DNA helicase activity, Mcm7 contributes to the DNA helicase activity of the Mcm complex through interaction with other subunits. In contrast, the Mcm4/ 6/7 complex containing a zinc finger mutant of Mcm4 with partially impaired DNA binding activity exhibited elevated DNA helicase activity. The Mcm4/6/7 complex containing this Mcm4 mutant tended to dissociate into trimeric complexes, suggesting that the zinc finger of Mcm4 is involved in subunit interactions of trimers. The Mcm4 mutants lacking the N-terminal 35 or 112 amino acids could form hexameric Mcm4/6/7 complexes, but displayed very little DNA helicase activity. In conjunction with the previously reported essential role of Mcm6 in ATP binding (You, Z., Komamura, Y., and Ishimi, Y. (1999) Mol Cell Biol 19, 8003-8015), our data indicate distinct roles of Mcm4, Mcm6, and Mcm7 subunits in activation of the DNA helicase activity of the Mcm.4/6/7 complex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据