4.6 Article

Volume exclusion effect as a driving force for reverse proteolysis - Implications for polypeptide assemblage in a macromolecular crowded milieu

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 45, 页码 43253-43261

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M207974200

关键词

-

向作者/读者索取更多资源

Macromolecular crowding, in principle, should affect any reaction that is accompanied by significant reduction in excluded volume. Here we have examined the influence of crowding on reverse proteolysis. We show that proteosynthesis of a polypeptide product with an interacting folding motif such as coiled coil is facilitated in crowded media as a consequence of the volume exclusion effect. Further, we demonstrate that crowding could also effect the conversion of a noncovalent protein complex (fragment complementing protein) obtained by limited proteolysis to the native covalent form, but only if the formation of the native protein results in large compaction leading to a substantial volume exclusion effect. Subtilisin-catalyzed reformation of native triosephosphate isomerase (TIM) from multiple fragments is facilitated by crowding. However, a single nick in ribonuclease S (RNase S) could not be ligated under similar conditions. The failure of generation of RNase A from RNase S is consistent with the fact that the crystal structure of the two forms are almost superimposable, and hence no significant difference of volume exclusion exists between reactant (RNase S) and product (RNase A). In contrast, considerable compaction, and consequently large reduction in excluded volume, is attained through the assembly of a TIM barrel structure. Taken together, these results have implications for both in vitro as well as in vivo polypeptide assemblage by reverse proteolysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据