4.6 Article

Structure of a novel P-superfamily spasmodic conotoxin reveals an inhibitory cystine knot motif

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 45, 页码 43033-43040

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M206690200

关键词

-

资金

  1. NIGMS NIH HHS [GM48677] Funding Source: Medline

向作者/读者索取更多资源

Conotoxin gm9a, a putative 27-residue polypeptide encoded by Conus gloriamaris, was recently identified as a homologue of the spasmodic peptide, tx9a, isolated from the venom of the mollusk-hunting cone shell Conus textile (Lirazan, M. B., Hooper, D., Corpuz, G. P., Ramilo, C. A., Bandyopadhyay, P., Cruz, L. J., and Olivera, B. M. (2000) Biochemistry 39, 1583-1588). The C. gloriamaris spasmodic peptide has been synthesized, and the refolded polypeptide was shown to be biologically active using a mouse bioassay. The chemically synthesized gm9a elicited the same symptomatology described previously for natively folded tx9a, and gm9a and tx9a were of similar potency, implying that neither the two gamma-carboxyglutamate (Gla) residues found in tx9a (Ser(8) and Ala(13) in gm9a) nor Gly(1) (Ser(1) in gm9a) are crucial for biological activity. We have determined the three-dimensional structure of gm9a in aqueous solution and demonstrated that the molecule adopts the well known inhibitory cystine knot motif constrained by three disulfide bonds involving Cys(2)-Cys(16), Cys(6)-Cys(18) and Cys(12)-Cys(23). Based on the gm9a structure, the sites of Gla substitution in tx9a are in loops located on one surface of the molecule, which is unlikely to be involved directly in receptor binding. Because this is the first structure reported for a member of the newly defined P-superfamily conotoxins, a comparison has been made with structurally related conotoxins. This shows that the structural scaffold that characterizes the P-conotoxins has the greatest potential for exhibiting structural diversity among the robust inhibitory cystine knot-containing conotoxins, a finding that has implications for functional epitope mimicry and protein engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据