4.8 Article

Origin of plant glycerol transporters by horizontal gene transfer and functional recruitment

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.192573799

关键词

MIP; aquaporins; aquaglyceroporins; functional convergence

向作者/读者索取更多资源

Gene-family evolution mostly relies on gene duplication coupled with functional diversification of gene products. However, other evolutionary mechanisms may also be important in generating protein diversity. The ubiquitous membrane intrinsic protein (MIP) gene family is an excellent model system to search for such alternative evolutionary mechanisms. MIPs are proteins that transport water, glycerol, and small solutes across cell membranes in all living organisms. We reconstructed the molecular phylogeny of MIPs based on amino acid sequence data by using neighbor-joining, maximum-likelihood, and Bayesian methods of phylogenetic inference. The recovered trees show an early and distinct separation of water and glycerol transporters, i.e., aquaporins (AQPs), and aquaglyceroporins. The latter are absent from plants. As expected, gene duplication and functional diversification account for most of the diversity of animal and plant members of the family. However, in contrast to this model, we find that the sister group of plant glycerol transporters are bacterial AQPs. This relationship suggests first that plant glycerol transporters may resulted from a single event of horizontal gene transfer from bacteria, which we have estimated to have occurred approximate to1,200 million years ago, at the origin of plants, and second that bacterial AQPs were likely recruited to transport glycerol in plants because of their absence of aquaglyceroporins. This striking example of adaptive evolution at the molecular level was demonstrated further by finding convergent or parallel replacements at particular amino acid positions related to water- and glycerol-transporting specificity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据