4.6 Article

Origin of the increased resistivity in epitaxial Fe3O4 films -: art. no. 201101

期刊

PHYSICAL REVIEW B
卷 66, 期 20, 页码 -

出版社

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.66.201101

关键词

-

向作者/读者索取更多资源

We report resistivity measurements on epitaxial Fe3O4 films between 3 and 100 nm thickness grown on polished MgO substrates. The resistivity of the films is larger than the bulk resistivity, and is increasing with decreasing film thickness. This can be explained by the significant decrease of antiphase domain size with decreasing film thickness, as observed by transmission electron microscopy. The domain size decreases from 40 nm for 100-nm-thick films, to 5 nm for 3-nm-thick films. The effective conductivity has been modeled as a function of the bulk and boundary conductivities using the effective medium approximation. It is suggested that the absence of the Verwey transition in the thinnest films is also related to the very small domain size, which inhibits long-range order.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据