4.6 Article

Dynamics of the solar atmosphere above a pore with a light bridge

期刊

ASTRONOMY & ASTROPHYSICS
卷 560, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201322148

关键词

sunspots; Sun: chromosphere; Sun: photosphere

资金

  1. Czech Science Foundation [P209/12/0287, P209/12/P568]
  2. Academy of Sciences of the Czech Republic [RVO: 67985815]
  3. Science and Technology Facilities Council [PP/D002907/1, ST/H000429/1] Funding Source: researchfish
  4. UK Space Agency [ST/J001732/1] Funding Source: researchfish
  5. STFC [ST/H000429/1, PP/D002907/1] Funding Source: UKRI

向作者/读者索取更多资源

Context. Solar pores are small sunspots lacking a penumbra that have a prevailing vertical magnetic-field component. They can include light bridges at places with locally reduced magnetic field. Like sunspots, they exhibit a wide range of oscillatory phenomena. Aims. A large isolated pore with a light bridge (NOAA 11005) is studied to obtain characteristics of a chromospheric filamentary structure around the pore, to analyse oscillations and waves in and around the pore, and to understand the structure and brightness of the light bridge. Methods. Spectral imaging observations in the line Ca II 854.2 nm and complementary spectropolarimetry in Fe I lines, obtained with the DST/IBIS spectrometer and HINODE/SOT spectropolarimeter, were used to measure photospheric and chromospheric velocity fields, oscillations, waves, the magnetic field in the photosphere, and acoustic energy flux and radiative losses in the chromosphere. Results. The chromospheric filamentary structure around the pore has all important characteristics of a superpenumbra: it shows an inverse Evershed effect and running waves, and has a similar morphology and oscillation character. The granular structure of the light bridge in the upper photosphere can be explained by radiative heating. Acoustic waves leaking up from the photosphere along the inclined magnetic field in the light bridge transfer enough energy flux to balance the entire radiative losses of the light-bridge chromosphere. Conclusions. A penumbra is not a necessary condition for the formation of a superpenumbra. The light bridge is heated by radiation in the photosphere and by acoustic waves in the chromosphere.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据