4.6 Article

The RhoA-binding protein, Rhophilin-2, regulates actin cytoskeleton organization

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 46, 页码 43924-43932

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M203569200

关键词

-

资金

  1. NCI NIH HHS [R29 CA422142] Funding Source: Medline

向作者/读者索取更多资源

The Rho GTPases regulate the actin cytoskeleton through interactions with various downstream effector molecules. Here we have identified a ubiquitously expressed human RhoA-binding protein, designated Rhophilin-2. Rhophilin-2 shows 40% amino acid similarity to human Rhophilin-1 and contains an N-terminal Rho-binding, a central Bro1-like, and a C-terminal PDZ domain. Glutathione S-transferase-capture experiments revealed that Rhophilin-1 and Rhophilin-2 interacted with both GDP- and GTP-bound RhoA in vitro. Despite the ability of Rhophilin-1 and Rhophilin-2 to interact with RhoA in a nucleotide-independent fashion, Rho-induced serum response element transcriptional activity was not altered by expression of either of these molecules. Although Rhophilin-2-expressing HeLa cells showed a loss of actin stress fibers, Rhophilin-1 expression had no noticeable effect on the actin cytoskeleton. Coexpression of Rhophilin-2 with a constitutively active Rho mutant reversed the disassembly phenotype, in which the coexpressing cells were more spread and less contracted than Rho alone-expressing cells. Expression of various Rhophilin-2 deletion and point mutants containing the N-terminal RhoA-binding domain but lacking other regions suggested that the disassembly of F-actin stress fibers was not simply caused by Rho sequestration. In addition, the Bro1 and PDZ domains of Rhophilin-2 were required for disassembly. RhoA activity assays also revealed that Rhophilin-2-expressing cells showed increased levels of RhoA-GTP suggesting that the Rhophilin-2-induced disassembly of stress fibers was not mediated by decreased RhoA activity. Based on the biochemical and biological activity, Rhophilin-2 may function normally in a Rho pathway to limit stress fiber formation and/or increase the turnover of F-actin structures in the absence of high levels of RhoA activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据