4.6 Article

Electronic states of ultrathin InAs/InP (001) quantum wells: A tight-binding study of the effects of band offset, strain, and intermixing

期刊

PHYSICAL REVIEW B
卷 66, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.66.195303

关键词

-

向作者/读者索取更多资源

We investigate theoretically the electronic structure of strained ultrathin InAs/InP (001) quantum wells (QWs), using the semiempirical sp(3)d(5)s(*) nearest-neighbors tight-binding model, the virtual crystal approximation, and the surface Green's function matching method. The energies of the bound states and the optical transitions are calculated for QW widths from 1 to 4 monolayers and for valence band offsets varying from 0.2 to 0.9 eV. The dependence of the transition energies on strain is investigated. The intermixing effects are studied for (i) graded interfaces with a diffusion concentration profile and (ii) InAsxP1-x/InP QWs of varying composition with abrupt interfaces. The effect of strain on the transition energies is found to be small for thin wells, whereas the effect of intermixing is significant and cannot be neglected. Comparing the results with experimental data, we conclude that the electronic structure of ultrathin InAs/InP (001) QWs cannot be accurately described within the simple model of a rectangular QW. The effect of intermixing however is sufficient to explain the experimental results within a reasonable range of band offsets and structure parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据