4.6 Article

The GALEX view of the Herschel Reference Survey Ultraviolet structural properties of nearby galaxies

期刊

ASTRONOMY & ASTROPHYSICS
卷 544, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201219312

关键词

catalogs; galaxies: evolution; galaxies: photometry; galaxies: structure; ultraviolet: galaxies

资金

  1. Alfred P. Sloan Foundation
  2. National Science Foundation
  3. US Department of Energy
  4. National Aeronautics and Space Administration
  5. Japanese Monbukagakusho
  6. Max Planck Society
  7. Higher Education Funding Council for England
  8. American Museum of Natural History
  9. Astrophysical Institute Potsdam
  10. University of Basel
  11. University of Cambridge
  12. Case Western Reserve University
  13. University of Chicago
  14. Drexel University
  15. Fermilab
  16. Institute for Advanced Study
  17. Japan Participation Group
  18. Johns Hopkins University
  19. Joint Institute for Nuclear Astrophysics
  20. Kavli Institute for Particle Astrophysics and Cosmology
  21. Korean Scientist Group
  22. Chinese Academy of Sciences (LAMOST)
  23. Los Alamos National Laboratory
  24. Max-Planck-Institute for Astronomy (MPIA)
  25. Max-Planck-Institute for Astrophysics (MPA)
  26. New Mexico State University
  27. Ohio State University
  28. University of Pittsburgh
  29. University of Portsmouth
  30. Princeton University
  31. United States Naval Observatory
  32. University of Washington
  33. European Community [229517]
  34. STFC [ST/H001530/1, ST/J001562/1, ST/G004633/1] Funding Source: UKRI
  35. Science and Technology Facilities Council [ST/J001562/1, ST/G004633/1] Funding Source: researchfish

向作者/读者索取更多资源

We present GALEX far-ultraviolet (FUV) and near-ultraviolet (NUV) as well as SDSS g, r, i photometry and structural parameters for the Herschel Reference Survey, a magnitude-, volume-limited sample of nearby galaxies in different environments. We use this unique dataset to investigate the ultraviolet (UV) structural scaling relations of nearby galaxies and to determine how the properties of the UV disk vary with atomic hydrogen content and environment. We find a clear change of slope in the stellar mass vs. effective surface brightness relation when moving from the optical to the UV, with more massive galaxies having brighter optical but fainter UV surface brightnesses than smaller systems. A similar change of slope is also seen in the radius vs. surface brightness relation. By comparing our observations with the predictions of a simple multi-zone chemical model of galaxy evolution, we show that these findings are a natural consequence of a much more efficient inside-out growth of the stellar disk in massive galaxies. We confirm that isophotal radii are always a better proxy for the size of the stellar/star-forming disk than effective quantities and we show that the extent of the UV disk (normalized to the optical size) is strongly correlated to the integrated Hi gas fraction. This relation still holds even when cluster spirals are considered, with Hi-deficient systems having less extended star-forming disks than Hi-normal galaxies. Interestingly, the star formation in the inner part of Hi-deficient galaxies is significantly less affected by the removal of the atomic hydrogen, as expected in a simple ram-pressure stripping scenario. These results suggest that it is the amount of Hi that regulates the growth of the star-forming disk in the outskirts of galaxies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据