4.6 Article

Physical properties of interstellar filaments

期刊

ASTRONOMY & ASTROPHYSICS
卷 542, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201218961

关键词

stars: formation; ISM: clouds; ISM: structure; submillimeter: ISM; infrared: ISM

资金

  1. CITA
  2. MSO
  3. Natural Sciences and Engineering Research Council of Canada
  4. Canadian Space Agency

向作者/读者索取更多资源

We analyze the physical parameters of interstellar filaments that we describe by an idealized model of isothermal self-gravitating infinite cylinder in pressure equilibrium with the ambient medium. Their gravitational state is characterized by the ratio f(cyl) of their mass line density to the maximum possible value for a cylinder in a vacuum. Equilibrium solutions exist only for f(cyl) < 1. This ratio is used in providing analytical expressions for the central density, the radius, the profile of the column density, the column density through the cloud centre, and the FWHM. The dependence of the physical properties on external pressure and temperature is discussed and directly compared to the case of pressure-confined isothermal self-gravitating spheres. Comparison with recent observations of the FWHM and the central column density N-H(0) show good agreement and suggest a filament temperature of similar to 10 K and an external pressure in the range 1.5 x 10(4) K cm(-3) to 5 x 104 K cm(-3). Stability considerations indicate that interstellar filaments become increasingly gravitationally unstable with mass line ratio f(cyl) approaching unity. For intermediate f(cyl) > 0.5 the instabilities should promote core formation through compression, with a separation of about five times the FWHM. We discuss the nature of filaments with high mass line densities and their relevance to gravitational fragmentation and star formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据