4.6 Article

Breaking through: The effects of a velocity distribution on barriers to dust growth

期刊

ASTRONOMY & ASTROPHYSICS
卷 544, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201220004

关键词

accretion; accretion disks; protoplanetary disks; planets and satellites: formation

资金

  1. Deutsche Forschungsgemeinschaft [Forschergruppe 759]
  2. NASA [HST-HF-51294.01-A, NAS 5-26555]

向作者/读者索取更多资源

Context. It is unknown how far dust growth can proceed by coagulation. Obstacles to collisional growth are the fragmentation and bouncing barriers. However, in all previous simulations of the dust-size evolution, only the mean collision velocity has been considered, neglecting that a small but possibly important fraction of the collisions will occur at both much lower and higher velocities. Aims. We study the effect of the probability distribution of impact velocities on the collisional dust growth barriers. Methods. We assume a Maxwellian velocity distribution for colliding particles to determine the fraction of sticking, bouncing, and fragmentation, and implement this in a dust-size evolution code. We also calculate the probability of growing through the barriers and the growth timescale in these regimes. Results. We find that the collisional growth barriers are not as sharp as previously thought. With the existence of low-velocity collisions, a small fraction of the particles manage to grow to masses orders of magnitude above the main population. Conclusions. A particle velocity distribution softens the fragmentation barrier and removes the bouncing barrier. It broadens the size distribution in a natural way, allowing the largest particles to become the first seeds that initiate sweep-up growth towards planetesimal sizes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据