4.6 Article

Dust coagulation processes as constrained by far-infrared observations

期刊

ASTRONOMY & ASTROPHYSICS
卷 548, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201218975

关键词

ISM: general; dust, extinction; submillimeter: ISM

资金

  1. French Agence National de la Recherche (ANR) through the program Cold Dust [ANR-07-BLAN-0364-01]

向作者/读者索取更多资源

Aims. We develop a simple model of coagulated dust particles of two sizes (3.5 and 60 nm radius) to understand the nature and the effects of coagulation, which could explain the evolution of the far-infrared (FIR) dust opacity observed in the transition between the diffuse and the dense interstellar medium (ISM) (n(H) > 10(3) cm(-3)). Methods. Using the discrete-dipole approximation (DDA) method, we have calculated the absorption coefficient, directly proportional to the opacity, of coagulated grains with varying numbers of sub-grains and of different grain composition. Results. We show that, in the transition from diffuse to dense clouds, an increase in the FIR opacity by a factor of about 2.7 is possible and a decrease in the grain temperature by up to 3-4 K can be explained by the presence of coagulated aggregates composed of four big grains and 4000 very small grains (40% of the volume of the BGs). The coagulation of very small grains into the aggregates leads to a decrease in the 60 mu m emission. Conclusions. This model can explain the observed increase in opacity at long wavelengths, the decrease in temperature from the diffuse ISM to denser regions with the coagulation of grains into aggregates and the absence of the 60 mu m emission with the coagulation of very small grains onto the surface of the big grains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据