4.5 Article

Visual subdivisions of the dorsal ventricular ridge of the iguana (Iguana iguana) as determined by electrophysiologic mapping

期刊

JOURNAL OF COMPARATIVE NEUROLOGY
卷 453, 期 3, 页码 226-246

出版社

WILEY-LISS
DOI: 10.1002/cne.10373

关键词

reptiles; mammals; evolution; vision; neurophysiology; sensory systems

资金

  1. NINDS NIH HHS [2R01NS35/03-01A1] Funding Source: Medline

向作者/读者索取更多资源

The dorsal ventricular ridge (DVR) of reptiles is one of two regions of the reptilian telencephalon that receives input from the dorsal thalamus. Although studies demonstrate that two visual thalamic nuclei, the dorsal lateral geniculate and rotundus, send afferents to the dorsal cortex and DVR, respectively, relatively little is known about physiologic representations. The present study determined the organization of the visual recipient region of the iguana DVR. Microelectrode mapping techniques were used to determine the extent, number of subdivisions, and retinotopy within the visually responsive region of the anterior DVR (ADVR). Visually responsive neurons were restricted to the anterior two thirds of the ADVR. Within this region, two topographically organized subdivisions were determined. Each subdivision contained a full representation of the visual field and could be distinguished from the other by differences in receptive field properties and reversals in receptive field progressions across their mutual border. A third subdivision of the ADVR, in which neurons are responsive to visual stimulation is also described; however, a distinct visuotopic representation could not be determined for this region. This third region forms a shell surrounding the lateral, dorsal, and medial aspects of the topographically organized subdivisions. These results demonstrate that there are multiple physiologic subdivisions in the thalamic recipient zone of the ADVR of the iguana. Comparisons to the ADVR of other reptiles are made, homologies to ectostriatial regions of the bird are proposed, and the findings are discussed in relation to telencephalic organization of other vertebrates. (C) 2002 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据