4.8 Article

Electrophysiological correlates of rest and activity in Drosophila melanogaster

期刊

CURRENT BIOLOGY
卷 12, 期 22, 页码 1934-1940

出版社

CELL PRESS
DOI: 10.1016/S0960-9822(02)01300-3

关键词

-

向作者/读者索取更多资源

Extended periods of rest in Drosophila melanogaster resemble mammalian sleep states in that they are characterized by heightened arousal thresholds and specific alterations in gene expression [1, 2]. Defined as inactivity periods spanning 5 or more min, amounts of this sleep-like state are, as in mammals, sensitive to prior amounts of waking activity, time of day, and pharmacological intervention [1-3]. Clearly recognizable changes in the pattern and amount of brain electrical activity accompany changes in motor activity and arousal thresholds originally used to identify mammalian sleeping behavior [4-6]. Electroencephalograms (EEGs) and/or local field potentials (LFPs) are now widely used to quantify sleep state amounts and define types of sleep. Thus, slow-wave sleep (SWS) is characterized by EEG spindles and large-amplitude delta-frequency (0-3.5 Hz) waves. Rapid-eye movement (REM) sleep is characterized by irregular gamma-frequency cortical EEG patterns and rhythmic theta-frequency (5-9 Hz) hippocampal EEG activity [7]. It is unknown whether rest and activity in Drosophila are associated with distinct electrophysiological correlates. To address this issue, we monitored motor activity levels and recorded LFPs in the medial brain between the mushroom bodies, structures implicated in the modulation of locomotor activity, of Drosophila [8]. The results indicate that UPS can be reliably recorded from the brains of awake, moving fruit flies, that targeted genetic manipulations can be used to localize sources of UP activity, and that brain electrical activity of Drosophila is reliably correlated with activity state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据