4.8 Article

A novel organic intercalation system with layered polymer crystals as the host compounds derived from 1,3-diene carboxylic acids

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 124, 期 46, 页码 13749-13756

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja020869c

关键词

-

向作者/读者索取更多资源

A new type of organic intercalation system using poly(muconic acid) and poly(sorbic acid) crystals as the host compounds is described. The layered polymer crystals as the host are derived from benzyl-, dodecyl-, or naphthylmethylammonium salts of (Z,Z)-muconic or (E,E)-sorbic acids by topochemical polymerization. The subsequent solid-state hydrolysis of the resulting ammonium polymer crystals provides the corresponding carboxylic acid polymer crystals. When alkylamines are reacted with poly(muconic acid) or poly(sorbic acid) crystals dispersed in methanol at room temperature for a few hours, the intercalation proceeds to give layered ammonium polymer crystals via solid-state reactions, in which the polymers maintain a layered structure throughout. The interplanar spacing value of the polymer crystals changes according to the size of the guest molecules; that is, it exactly depends on the carbon number of the alkylamines used for each reaction of poly(muconic acid) or poly(sorbic acid) crystals. The stacking structure of alkyl chains with a tilt in the intercalated alkylammonium layers exists irrespective of the chemical and crystal structures of the host polymers. The intercalation of higher alkylamines into poly(muconic acid) crystals proceeds fast and quantitatively, while the conversion is dependent on the reaction conditions such as the structure and amount of the amine and the reaction time during the intercalation with poly(sorbic acid) crystals, due to the difference in the repeating layered structures of these polymer crystals. Some functional amines are also used as the guest molecules for this organic intercalation system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据