4.6 Article

Observational effects of magnetism in O stars: surface nitrogen abundances

期刊

ASTRONOMY & ASTROPHYSICS
卷 538, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201118039

关键词

stars: massive; stars: atmospheres; stars: fundamental parameters; stars: abundances; stars: magnetic field

资金

  1. Natural Science and Engineering Research Council of Canada

向作者/读者索取更多资源

Aims. We investigate the surface nitrogen content of the six magnetic O stars known to date as well as of the early B-type star tau Sco. We compare these abundances to predictions of evolutionary models to isolate the effects of magnetic field on the transport of elements in stellar interiors. Methods. We conduct a quantitative spectroscopic analysis of the sample stars with state-of-the-art atmosphere models. We rely on high signal-to-noise ratio, high resolution optical spectra obtained with ESPADONS at CFHT and NARVAL at TBL. Atmosphere models and synthetic spectra are computed with the code CMFGEN. Values of N/H together with their uncertainties are determined and compared to predictions of evolutionary models. Results. We find that the magnetic stars can be divided into two groups: one with stars displaying no N enrichment (one object); and one with stars most likely showing extra N enrichment (5 objects). For one star (Theta(1) Ori C) no robust conclusion can be drawn due to its young age. The star with no N enrichment is the one with the weakest magnetic field, possibly of dynamo origin. It might be a star having experienced strong magnetic braking under the condition of solid body rotation, but its rotational velocity is still relatively large. The five stars with high N content were probably slow rotators on the zero age main sequence, but they have surface N/H typical of normal O stars, indicating that the presence of a (probably fossil) magnetic field leads to extra enrichment. These stars may have a strong differential rotation inducing shear mixing. Our results should be viewed as a basis on which new theoretical simulations can rely to better understand the effect of magnetism on the evolution of massive stars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据