4.8 Article

Synthesis and properties of 1,3,5-benzene periodic mesoporous organosilica (PMO): Novel aromatic PMO with three point attachments and unique thermal transformations

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 124, 期 46, 页码 13886-13895

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja027877d

关键词

-

向作者/读者索取更多资源

A new aromatic periodic mesoporous organosilica material containing benzene functional groups that are symmetrically integrated with three silicon atoms in an organosilica mesoporous framework is reported. The material has a high surface area, well-ordered mesoporous structure and thermally stable framework aromatic groups. The functional aromatic moieties were observed to undergo sequential thermal transformation from a three to two and then to a one point attachment within the framework upon continuous thermolysis under air before eventually being converted to periodic mesoporous silica devoid of aromatic groups at high temperatures and longer pyrolysis times. The mesoporosity of the material was characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), and nitrogen porosimetry, whereas the presence and transformation of the aromatic groups in the walls of the materials were characterized by solid-state NMR spectroscopy, mass spectrometry, and thermogravinnetric analysis. The attachment of a benzene ring symmetrically onto three siloxanes of the framework was used advantageously as a cross-linker to enhance the thermal stability of the organic group. Some of these properties are investigated in comparison with other aromatic PMOs that have only two point attachments and an amorphous phenylsilica gel that has only one point attachment. The successful synthesis of the first aromatic PIVIO with its organic group attached within the framework through more than two points is an important step toward the synthesis of PMOs having organic groups with more complex and multiple attachments within the framework.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据