4.7 Article

Novel dual inhibitors of AChE and MAO derived from hydroxy aminoindan and phenethylamine as potential treatment for Alzheimer's disease

期刊

JOURNAL OF MEDICINAL CHEMISTRY
卷 45, 期 24, 页码 5260-5279

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jm020120c

关键词

-

向作者/读者索取更多资源

Carbamate derivatives of N-propargylaminoindans (Series I) and N-propargylphenethylamines (Series II) were synthesized via multistep procedures from the corresponding hydroxy precursors. The respective rasagiline- and selegiline-related series were designed to combine inhibitory activities of both acetylcholine esterase (AChE) and monoamine oxidase (MAO) by virtue of their carbamoyl and propargylamine pharmacophores. Each compound was tested for these activities in vitro in order to find molecules with similar potencies against each enzyme. Compounds with such dual AChE and MAO inhibitory activities are expected to have potential for the treatment of Alzheimer's disease. The observed SAR also offers insight into the requirements of the active sites on these enzymes. A carbamate moiety was found to be essential for AChE inhibition, which was absent in the corresponding hydroxy precursors. The propargyl group caused 2-70-fold decrease in AChE inhibitory activity (depending on the position of the carbamoyl group) of Series I, but had little or no effect in Series II. Thus, the 6- and 7-carbamyloxyphenyls in Series I were either equipotent to, or slightly (2- to 5-fold) less active as AChE inhibitors than, the corresponding compounds in Series II, while the 4-carbamyloxyphenyls were more potent. The presence of the carbamate moiety in 6- and 7-carbamyloxyphenyls of Series I, considerably decreased MAO-A and -B inhibitory activity, compared to that of the parent hydroxy analogues, while the opposite was true for Series II. Thus, the 6- and 7-carbamyloxyphenyls in Series I were 2-3 orders of magnitude weaker MAO inhibitors while the 4- carbamyloxyphenyls were equipotent with the corresponding compounds in Series II. In both series, N-methylation of the propargylamine enhanced the MAO (A and B equally) inhibitory activities and decreased the AChE inhibitory activity. Two candidates belonging to the indan and tetralin ring systems (24c, 27b) and one phenethylamine (53d) were identified as possible leads for further development based on the following criteria: (a) comparable AChE and MAO-B inhibitory activities, (b) good to moderate AChE inhibitory activity, and (c) lack of strong MAO-A selectivity. However, it is likely that these compounds will be metabolized to the corresponding phenols, with inhibitory activities against AChE and/or MAO-A or -B, different from those of the parent carbamates. Thus, the apparent enzyme inhibition will be a result of the combined inhibition of all of these individual metabolites. The results of our ongoing in vivo screening programs will be published elsewhere.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据