4.6 Article

The magnetic field topology of the weak-lined T Tauri star V410 Tauri New strategies for Zeeman-Doppler imaging

期刊

ASTRONOMY & ASTROPHYSICS
卷 548, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201220215

关键词

stars: magnetic field; stars: activity; methods: data analysis; line: profiles; techniques: spectroscopic; stars: pre-main sequence

资金

  1. German Science Foundation (DFG) [STR645/1]
  2. Natural Science and Engineering Research Council of Canada (NSERC)

向作者/读者索取更多资源

Aims. In a follow-up investigation we present Zeeman-Doppler maps of the weak-lined T Tauri star (WTTS) V410 Tau. As a rapid rotating star and a typical WTTS the stellar surface of V410 Tau is accessible to surface imaging techniques and allows us to detect and reconstruct the major magnetic surface features on this pre-main sequence star. Methods. The polarized signals we are measuring are on the order of 10(-4) to 10(-3) and are hidden well below the noise level of a single observation. A new line profile reconstruction technique based on a singular value decomposition (SVD) allows us to extract the weak polarized line profiles (Stokes V) as well as the intensity profiles (Stokes I). One of the key features of the line profile reconstruction is that the SVD line profiles are amenable to radiative transfer modeling within our Zeeman-Doppler Imaging code iMap. The code also utilizes a new iterative regularization scheme which is independent of any additional surface constraints. To provide more stability a vital part of our inversion strategy is to invert both Stokes I and Stokes V profiles to simultaneously reconstruct the temperature and magnetic field surface distribution of V410 Tau. A new image-shear analysis is also implemented to allow the search for image and line profile distortions induced by a differential rotation of the star. Results. The magnetic field structure we obtain for V410 Tau shows a good spatial correlation with the surface temperature and is dominated by a strong field within the cool polar spot. The Zeeman-Doppler maps exhibit a large-scale organization of both polarities around the polar cap in the form of a twisted bipolar structure. The magnetic field reaches a value of almost 2 kG within the polar region but smaller fields are also present down to lower latitudes. The pronounced non-axisymmetric field structure and the non-detection of a differential rotation for V410 Tau supports the idea of an underlying alpha(2)-type dynamo, which is predicted for WTTS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据