4.8 Article

Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.232569499

关键词

-

向作者/读者索取更多资源

Shifts in the Mg/Ca ratio of seawater driven by changes in midocean ridge spreading rates have produced oscillations in the mineralogy of nonskeletal carbonate precipitates from seawater on time scales of 108 years. Since Cambrian time, skeletal mineralogies of anatomically simple organisms functioning as major reef builders or producers of shallow marine limestones have generally corresponded in mineral composition to nonskeletal precipitates. Here we report on experiments showing that the ambient Mg/Ca ratio actually governs the skeletal mineralogy of some simple organisms. In modern seas, coralline algae produce skeletons of high-Mg calcite (>4 mol % MgCO3). We grew three species of these algae in artificial seawaters having three different Mg/Ca ratios. All of the species incorporated amounts of Mg into their skeletons in proportion to the ambient Mg/Ca ratio, mimicking the pattern for nonskeletal precipitation. Thus, the algae calcified as if they were simply inducing precipitation from seawater through their consumption of CO2 for photosynthesis; presumably organic templates specify the calcite crystal structure of their skeletons. In artificial seawater with the low Mg/Ca ratio of Late Cretaceous seas, the algae in our experiments produced low-Mg calcite (<4 mol % MgCO3), the carbonate mineral formed by nonskeletal precipitation in those ancient seas. Our results suggest that many taxa that produce high-Mg calcite today produced low-Mg calcite in Late Cretaceous seas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据