4.8 Article

Chemical chaperones increase the cellular activity of N370S β-glucosidase:: A therapeutic strategy for Gaucher disease

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.192582899

关键词

-

向作者/读者索取更多资源

Gaucher disease is a lysosomal storage disorder caused by deficient lysosomal beta-glucosidase (beta-Glu) activity. A marked decrease in enzyme activity results in progressive accumulation of the substrate (glucosylceramide) in macrophages, leading to hepatosplenomegaly, anemia, skeletal lesions, and sometimes CNS involvement. Enzyme replacement therapy for Gaucher disease is costly and relatively ineffective for CNS involvement. Chemical chaperones have been shown to stabilize various proteins against misfolding, increasing proper trafficking from the endoplasmic reticulum. We report herein that the addition of subinhibitory concentrations (10 muM) of N-(n-nonyl)deoxynojirimycin (NN-DNJ) to a fibroblast culture medium for 9 days leads to a 2-fold increase in the activity of N370S beta-Glu, the most common mutation causing Gaucher disease. Moreover, the increased activity persists for at least 6 days after the withdrawal of the putative chaperone. The NN-DNJ chaperone also increases WT beta-Glu activity, but not that of L444P, a less prevalent Gaucher disease variant. Incubation of isolated soluble WT enzyme with NN-DNJ reveals that beta-Glu is stabilized against heat denaturation in a dose-dependent fashion. We propose that NN-DNJ chaperones beta-Glu folding at neutral pH, thus allowing the stabilized enzyme to transit from the endoplasmic reticulum to the Golgi, enabling proper trafficking to the lysosome. Clinical data suggest that a modest increase in beta-Glu activity may be sufficient to achieve a therapeutic effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据