4.4 Article

Relationship between erythrocyte membrane phase properties and susceptibility to secretory phospholipase A2

期刊

BIOCHEMISTRY
卷 41, 期 47, 页码 13982-13988

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi026796r

关键词

-

资金

  1. NCRR NIH HHS [RR03155] Funding Source: Medline

向作者/读者索取更多资源

Normally, cell membranes resist hydrolysis by secretory phospholipase A(2). However, upon elevation of intracellular calcium, the cells become susceptible. Previous investigations demonstrated a possible relationship between changes in lipid order caused by increased calcium and susceptibility to phospholipase A(2). To further explore this relationship, we used temperature as an experimental means of manipulating membrane physical properties. We then compared the response of human erythrocytes to calcium ionophore at various temperatures in the range of 20-50 degreesC using fluorescence spectroscopy and two-photon fluorescence microscopy. The steady state fluorescence emission of the environment-sensitive probe, laurdan, revealed that erythrocyte membrane order decreases systematically with temperature throughout this range, especially between 28 and 45 degreesC. Furthermore, the ability of calcium ionophore to induce increased membrane order and susceptibility to phospholipase A(2) depended similarly on temperature. Both responses to calcium influx were enhanced as membrane fluidity increased. Analysis of the spatial distribution of laurdan fluorescence at several temperatures indicated that the ordering effect of intracellular calcium on fluid membranes generates an increase in the number of fluid-solid boundaries. Hydrolysis of the membrane appeared to progress outward from these boundaries. We conclude that phospholipase A(2) prefers to hydrolyze lipids in fluid regions of human erythrocyte membranes, but primarily when those regions coexist with domains of ordered lipids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据