4.6 Article

Eccentricity of radiative disks in close binary-star systems

期刊

ASTRONOMY & ASTROPHYSICS
卷 539, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201118075

关键词

protoplanetary disks; methods: numerical; planets and satellites: formation

资金

  1. Herchel Smith Postdoctoral Fellowship

向作者/读者索取更多资源

Context. Disks in binaries have a complex behavior because of the perturbations of the companion star. Planetesimal growth and planet formation in binary-star systems both depend on the companion star parameters and the properties of the circumstellar disk. An eccentric disk may significantly increase the impact velocity of planetesimals and therefore jeopardize the accumulation process. Aims. We model the evolution of disks in close binaries including the effects of self-gravity and adopting different prescriptions to model the disk radiative properties. We focus on the dynamical properties and evolutionary tracks of the disks. Methods. We use the hydrodynamical code FARGO and include in its energy equation both heating and cooling effects. Results. Radiative disks have a lower disk eccentricity than locally isothermal disks with the same temperature profile. Their average eccentricity is about 0.05, and is almost independent of the eccentricity of the binary orbit, in contrast to locally isothermal disk models. As a consequence, we do not observe the formation of an internal elliptical low density region as in locally isothermal disk models. However, the disk eccentricity depends on the disk mass in terms of the opacities. Akin to locally isothermal disk models, self-gravity forces the disk's longitude of pericenter to librate about a fixed orientation with respect to the binary apsidal line (pi). Conclusions. The disk radiative properties play an important role in the evolution of disks in binaries. A radiative disk has an overall shape and internal structure that differ significantly from those of a locally isothermal disk with a similar temperature profile. This is an important finding for both describing the evolutionary track of the disk during its progressive mass loss, and for planet formation because the internal structure of the disk is relevant to planetesimal growth in binary systems. The non-symmetrical distribution of mass in these disks causes high eccentricities for planetesimals, whose growth may be affected.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据