4.7 Article

The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 204, 期 1-2, 页码 215-229

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0012-821X(02)00984-6

关键词

thorium; protactinium; beryllium; scavenging; particle composition; sediment traps

向作者/读者索取更多资源

We have examined the relative affinity of Th, Pa and Be for sorption from seawater onto particles of variable composition (opal, carbonate, lithogenic particles and organic carbon). Nuclide concentrations in particles collected from time-series sediment traps were normalized by the dissolved nuclide concentration in the overlying water column in order to compute partition coefficients under conditions spanning a wide range of particle flux and particle composition. Our results suggest that the affinity of particles for Pa and Be increases with their increasing opal content and decreasing carbonate content, while the affinity of particles for Th increases with increasing carbonate content, and decreases with increasing opal content. We find no correlation between the aluminosilicate content of particles and their affinity for scavenging of any of these elements. Extrapolating to a pure CaCO3 end member, the partition coefficient for Th (9.0 x 10(6) g g(-1)) is similar to40 times greater than for Pa, and roughly 100 times greater than for Be, whereas for a pure opal end member, the partition coefficient for Th (3.9 x 10(5) g g(-1)) is slightly less than that for Pa and Be. Partition coefficients decrease with increasing particle flux in open-ocean settings, but not in an ocean-margin region. This kinetic effect reflects the increasing contribution of unaltered surface material reaching the sediment traps as particle flux increases. The degree of fractionation between Pa and Th and between Be and Th depends on the opal:carbonate rain ratio. These results challenge the use of sedimentary Pa-231/Th-230 and Be-10/Th-230 ratios as simple proxies of particle flux. However, the strong dependence of nuclide scavenging on the opal:carbonate rain ratio may provide a needed tool for reconstructing past changes in planktonic community composition. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据