4.6 Article

Non-linear simple relativistic Alfven waves in astrophysical plasmas

期刊

ASTRONOMY & ASTROPHYSICS
卷 542, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201118630

关键词

magnetohydrodynamics (MHD); waves; relativistic processes; planet-star interactions

向作者/读者索取更多资源

Aims. Large amplitude MHD perturbations are generated in magnetized tenuous relativistically moving plasmas, such as winds emitted by compact stellar objects or galactic nuclei, when a rapid change occurs at their boundaries or when an obstacle is present in them. These perturbations may involve relativistic motions in the rest-frame of the unperturbed plasma. In this paper, we calculate the characteristics and the structure of relativistic non-linear Alfven waves. Methods. We establish these properties for special-relativistic perturbations occurring in a particular type of non-linear waves, the simple waves. Results. We derive the conditions applicable to Alfvenic perturbations in a cold flow. We calculate the characteristics of these perturbations and the structure of wave trains of finite extent in the propagation direction of these characteristics, as observed in the unperturbed fluid proper frame. We determine the velocity of the characteristics with respect to any observer. This velocity is found to be a first integral, constant in time and space. This implies that relativistic Alfvenic perturbations are channeled, in the unperturbed fluid proper frame, by the unperturbed magnetic field and travel along this field neither steepening nor breaking into shocks. For finite wave trains, the Lorentz factor is found to be limited by some maximum value that we calculate and that depends on the ratio of proper magnetic energy density to material energy density in the unperturbed fluid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据