4.7 Article

A genetic algorithm for shortest path routing problem and the sizing of populations

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TEVC.2002.804323

关键词

gambler's ruin model; genetic algorithms; population size; shortest path routing problem

向作者/读者索取更多资源

This paper presents a genetic algorithmic approach to the shortest path (SP) routing problem. Variable-length chromosomes (strings) and their genes (parameters) have been used for encoding the problem. The crossover operation exchanges partial chromosomes (partial routes) at positionally independent crossing sites and the mutation operation maintains the genetic diversity of the population. The proposed algorithm can cure all the infeasible chromosomes with a simple repair function. Crossover and mutation together provide a search capability that results in improved quality of solution and enhanced rate of convergence. This paper also develops a population-sizing equation that facilitates a solution with desired quality. It is based on the gambler's ruin model; the equation has been further enhanced and generalized, however. The equation relates the size of the population, the quality of solution, the cardinality of the alphabet, and other parameters of the proposed algorithm. Computer simulations show that the proposed algorithm exhibits a much better quality of solution (route optimality) and a much higher rate of convergence than other algorithms. The results are relatively independent of problem types (network sizes and topologies) for almost all source-destination pairs. Furthermore, simulation studies emphasize the usefulness of the population-sizing equation. The equation scales to larger networks. It is felt that it can be used for determining an adequate population size (for a desired quality of solution) in the SP routing problem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据