4.7 Article

Micro structure-based simulation of thermomechanical behavior of composite materials by object-oriented finite element analysis

期刊

MATERIALS CHARACTERIZATION
卷 49, 期 5, 页码 395-407

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S1044-5803(03)00054-8

关键词

microstructure-based modeling; Al/SiC composites; WC/Co composites; Young's modulus; thermal expansion

向作者/读者索取更多资源

While it is well recognized that microstructure controls the physical and mechanical properties of a material, the complexity of the microstructure often makes it difficult to simulate by analytical or numerical techniques. In this paper we present a relatively new approach to incorporate microstructures into finite element modeling using an object-oriented finite element technique. This technique combines microstructural data in the form of experimental or simulated microstructures, with fundamental material data (such as elastic modulus or coefficient of thermal expansion of the constituent phases) as a basis for understanding material behavior. The object-oriented technique is a radical departure from conventional finite element analysis, where a unit-cell model is used as the basis for predicting material behavior. Instead, the starting point of object-oriented finite element analysis is the actual microstructure of the material being investigated. In this paper, an introduction to the object-oriented finite element approach to microstructure-based modeling is provided with two examples: SiC particle-reinforced At matrix composites and double-cemented WC particle-reinforced Co matrix composites. It will be shown that object-oriented finite element analysis is a unique tool that can be used to predict elastic and thermal constants of the composites, as well as salient effects of the microstructure on local stress state. (C) 2003 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据