4.4 Article

Development of novel antibacterial peptides that kill resistant isolates

期刊

PEPTIDES
卷 23, 期 12, 页码 2071-2083

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S0196-9781(02)00244-9

关键词

antimicrobial peptides; bacteriocidal analogs; in vivo protection; proline-rich; serum stability; solid-phase synthesis

向作者/读者索取更多资源

The rapid emergence of bacterial strains that are resistant to current antibiotics requires the development of novel types of antimicrobial compounds. Proline-rich cationic antibacterial peptides such as pyrrhocoricin kill responsive bacteria by binding to the 70 kDa heat shock protein DnaK and inhibiting protein folding. We designed and synthesized multiply protected dimeric analogs of pyrrhocoricin and optimized the in vitro antibacterial efficacy assays for peptide antibiotics. Pyrrhocoricin and the designed dimers killed beta-lactam, tetracycline-or aminoglycoside-resistant strains of Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the submicromolar or low micromolar concentration range. One of the peptides also killed Pseudomonas aeruginosa. The designed dimers showed improved stability in mammalian sera compared to the native analog. In a murine H. influenzae lung infection model, a single dose of a dimeric pyrrhocoricin analog reduced the bacteria in the bronchoalveolar lavage when delivered intranasally. The solid-phase synthesis was optimized for large-scale laboratory preparations. (C) 2002 Elsevier Science Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据