4.6 Article

Data-reduction techniques for high-contrast imaging polarimetry Applications to ExPo

期刊

ASTRONOMY & ASTROPHYSICS
卷 531, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201116918

关键词

instrumentation: polarimeters; polarization; techniques: polarimetric; methods: data analysis; circumstellar matter

向作者/读者索取更多资源

Context. Imaging polarimetry is a powerful tool for detecting and characterizing exoplanets and circumstellar environments. Polarimetry allows a separation of the light coming from an unpolarized source such as a star and the polarized source such as a planet or a protoplanetary disk. Future facilities like SPHERE at the VLT or EPICS at the E-ELT will incorporate imaging polarimetry to detect exoplanets. The Extreme Polarimeter (ExPo) is a dual-beam imaging polarimeter that can currently reach contrast ratios of 10(5), enough to characterize circumstellar environments. Aims. We present the data-reduction steps for a dual-beam imaging polarimeter that can reach contrast ratios of 10(5). Methods. The data obtained with ExPo at the William Herschel Telescope (WHT) are analyzed. Instrumental artifacts and noise sources are discussed for an unpolarized star and for a protoplanetary disk (AB Aurigae). Results. The combination of fast modulation and dual-beam techniques allows us to minimize instrumental artifacts. A proper data processing and alignment of the images is fundamental when dealing with high contrasts. Imaging polarimetry proves to be a powerful method to resolve circumstellar environments even without a coronagraph mask or an adaptive optics system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据