4.6 Article

Hydrogenation of solid hydrogen cyanide HCN and methanimine CH2NH at low temperature

期刊

ASTRONOMY & ASTROPHYSICS
卷 534, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201117494

关键词

astrochemistry; ISM: molecules; molecular processes

资金

  1. French national programme Physique Chimie du Milieu Interstellaire (PCMI)
  2. Centre National d'Etudes Spatiales (CNES)

向作者/读者索取更多资源

Context. Hydrogenation reactions dominate grain surface chemistry in dense molecular clouds and lead to the formation of complex saturated molecules in the interstellar medium. Aims. We investigate in the laboratory the hydrogenation reaction network of hydrogen cyanide HCN. Methods. Pure hydrogen cyanide HCN and methanimine CH2NH ices are bombarded at room temperature by H-atoms in an ultra-high vacuum experiment. Warm H-atoms are generated in an H-2 plasma source. The ices are monitored with Fourier-transform infrared spectroscopy in reflection absorption mode. The hydrogenation products are detected in the gas phase by mass spectroscopy during temperature-programmed desorption experiments. Results. HCN hydrogenation leads to the formation of methylamine CH3NH2, and CH2NH hydrogenation leads to the formation of methylamine CH3NH2, suggesting that CH2NH can be a hydrogenation- intermediate species between HCN and CH3NH2. Conclusions. In cold environments the HCN hydrogenation reaction can produce CH3NH2, which is known to be a glycine precursor, and to destroy solid-state HCN, preventing its observation in molecular clouds ices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据