4.6 Article

XMM-Newton observations of the low-mass X-ray binary EXO 0748-676 in quiescence

期刊

ASTRONOMY & ASTROPHYSICS
卷 528, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201016200

关键词

X-rays: binaries; accretion, accretion disks; X-rays: individuals: EXO 0748-676; stars: neutron

资金

  1. ESA member states
  2. USA (NASA)

向作者/读者索取更多资源

The neutron star low-mass X-ray binary EXO 0748-676 started a transition from outburst to quiescence in August 2008, after more than 24 years of continuous accretion. The return of the source to quiescence has been monitored extensively by several X-ray observatories. Here, we report on four XMM-Newton observations elapsing a period of more than 19 months that started in November 2008. The X-ray spectra contain a soft thermal component that we fit with a neutron-star atmosphere model. In only the first observation do we find a significant second component above similar to 3 keV accounting for similar to 7% of the total flux, which might be indicative of residual accretion. The thermal bolometric flux and the temperature of the neutron star crust decrease steadily by 40% and 10%, respectively, between the first and the fourth observations. At the time of the last observation in June 2010, we obtain a thermal bolometric luminosity of 5.6 x 10(33) (d/7.1 kpc)(2) erg s(-1) and a temperature of the neutron star crust of 109 eV. The cooling curve is consistent with a relatively hot medium-mass neutron star cooling by standard mechanisms. From the spectral fits to a neutron-star atmosphere model, we infer limits to the mass and the radius of the neutron star. We find that to achieve self-consistency between the neutron-star masses derived using the different methods, the value of the distance is constrained to be less than or similar to 6 kpc. For this value of the distance, the derived mass and radius contours are consistent with a number of EoSs with nucleons and hyperons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据