4.6 Article

Chemical enrichment mechanisms in ω Centauri: clues from neutron-capture elements

期刊

ASTRONOMY & ASTROPHYSICS
卷 534, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201117630

关键词

stars: abundances; stars: Population II; globular clusters: individual: omega Centauri (NGC 5139)

资金

  1. Italian MIUR [20075TP5K9]
  2. PRIN INAF
  3. US National Science Foundation [AST-0908978]

向作者/读者索取更多资源

Context. In the complex picture of multiple stellar populations in globular clusters (GCs), a special role is played by NGC 5139 (omega Centauri). At variance with the majority of GCs, omega Cen exhibits significant star-to-star variations in metallicity and in relative neutron-capture element abundance ratios with respect to Fe, along with split evolutionary sequences as revealed from colour-magnitude diagrams. Combining information from photometry and spectroscopy, several studies suggested that an age spread of several Gyr has to be invoked to explain (at least partially) some of the observed features. However, a comprehensive understanding of the formation, evolution and chemical enrichment processes is still not at hand. Aims. Relatively metal-rich omega Cen stars display neutron-capture abundance distributions dominated by contributions from the s-process, but it is not clear what roles have been played by the so-called main and weak s-process components in generating these abundances. To gain better insight into this question we derived lead (Pb) abundances for several omega Cen cluster members, because this element can only be produced by the main s-process. Methods. We analysed high-resolution UVES@VLT spectra of a sample of twelve red-giant branch stars, deriving abundances of Pb and also of Y, Zr, La, Ce, Eu, and the C+N+O sum. Spectral synthesis was applied to all features, taking into account isotopic shifts and/or hyperfine structure as needed. Results. We measured for the first time the Pb content in omega Cen, discovering a clear hint for a Pb production occurring at [Fe/H] > -1.7 dex. Our data suggest that the role of the weak component in the production of s-process elements is negligible. Moreover, evidence gathered from the abundances of other elements indicates that the main component occurring in this GC is peculiar and shifted towards higher mass polluters than the standard one.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据