4.6 Article

Dry matter accumulation in Citrus fruit is not limited by transport capacity of the pedicel

期刊

ANNALS OF BOTANY
卷 90, 期 6, 页码 755-764

出版社

OXFORD UNIV PRESS
DOI: 10.1093/aob/mcf257

关键词

auxin; Citrus clementina; Citrus sinensis; clementine; fruit growth; mandarin; orange; pedicel vascularization; phloem formation; specific mass transfer; transport in the phloem

向作者/读者索取更多资源

The vascularization of the pedicel in Marisol clementine (Citrus clementina Hort. ex Tanaka) has been characterized in relation to fruit growth. Phloem and xylem formation occurred during the first half of the period of fruit growth. Phloem cross-sectional area reached its maximum value by the end of fruitlet abscission, 78 d after anthesis (DAA), shortly after the rate of accumulation of dry matter in fruitlets reached its maximum value. Secondary xylem formation occurred until day 93, well after the end of fruitlet abscission. At fruit maturity, xylem accounted for 42-46 % of the cross-section of the pedicel. Vessels differentiated in this late-formed xylem. Formation of phloem and early xylem was directly related to fruitlet size (and growth rate). Differences in the rate of formation of conductive tissues in the pedicel of the developing fruitlets followed rather than preceded the differences in growth rate. Specific mass transfer (SMT) in the phloem was highest in the fastest growing fruitlets, and peaked during the late stages of fruitlet abscission (72-78 DAA) and during the main period of fruit growth (107-121 DAA). Application of a synthetic auxin to developing fruits, either at the end of flowering (2,4-D) or by day 64 after flowering (2,4-DP), increased the growth rate of the fruit and fruit size at maturity (8-13 % increase in fruit diameter at maturity). These auxin applications also enhanced the formation of conductive tissues in the pedicel, with a specific effect on phloem formation. Applying auxin at flowering resulted in a reduction in the phloem SMT by days 72-78, whereas auxin application on day 64 increased this parameter. Despite this difference in behaviour, which resulted from the different time-course of the growth response of the fruit to auxin applications, these applications increased fruit size to a similar extent. Severing 37 % of the phloem of the pedicel during the main period of fruit growth resulted in an increase in the specific mass transfer in the phloem but had no influence on fruit growth. These observations demonstrate that the transport capacity in the phloem of the pedicel does not limit fruit growth and, within the limits of our experiments, an increase in demand by the fruit appeared to be matched by an increase in SMT. The dependence of late xylem formation (after the period of fruitlet abscission) on fruitlet growth was demonstrated in Salustiana orange [Citrus sinensis (L.) Osbeck] by means of controlling fruit growth through the manipulation of leaf area. Fruit growth at this time was more closely related to leaf area than to carbohydrate levels, suggesting that it may be limited by current photosynthesis. (C) 2002 Annals of Botany Company.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据