4.4 Article

Population distribution of aldehyde dehydrogenase-2 genetic polymorphism: Implications for risk assessment

期刊

REGULATORY TOXICOLOGY AND PHARMACOLOGY
卷 36, 期 3, 页码 297-309

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/rtph.2002.1591

关键词

genetic polymorphism; aldehyde dehydrogenase; pharmacokinetics; variability; risk assessment

向作者/读者索取更多资源

The role of genetic polymorphisms in modulating xenobiotic metabolism and susceptibility to cancer and other health effects has been suggested in numerous studies. However, risk assessments have generally not used this information to characterize population variability or adjust risks for susceptible subgroups. This paper focuses upon the aldehyde dehydrogenase-2 (ALDH2) system because it exemplifies the pivotal role genetic polymorphisms can play in determining enzyme function and susceptibility. Allelic variants in ALDH2 cause decreased ability to clear acetaldehyde and other aldehyde substrates, with homozygous variants (ALDH2*2/2) having no activity and heterozygotes (ALDH2* 1/2) having intermediate activity relative to the predominant wild type (ALDH2* 1/1). These polymorphisms are associated with increased buildup of acetaldehyde following ethanol ingestion and increased immediate symptoms (flushing syndrome) and long-term cancer risks. We have used Monte Carlo simulation to characterize the population distribution of ALDH2 allelic variants and inter-individual variability in aldehyde internal dose. The nonfunctional allele is rare in most populations, but is common in Asians such that 40% are heterozygotes and 5% are homozygote variants. The ratio of the 95th or 99th percentiles of the Asian population compared to the median of the U.S. population is 14- to 26-fold, a variability factor that is larger than the default pharmacokinetic uncertainty factor (3.2-fold) commonly used in risk assessment. Approaches are described for using ALDH2 population distributions in physiologically based pharmacokinetic-Monte Carlo refinements of risk assessments for xenobiotics which are metabolized to aldehyde intermediates (e.g., ethanol, toluene, ethylene glycol monomethyl ether). (C) 2002 Elsevier Science (USA).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据