4.6 Article

Quantum-mechanical simulation of MgAl2O4 under high pressure -: art. no. 224114

期刊

PHYSICAL REVIEW B
卷 66, 期 22, 页码 -

出版社

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.66.224114

关键词

-

向作者/读者索取更多资源

The equations of state and phase diagrams of the cubic spinel and two high-pressure polymorphs of MgAl2O4 have been investigated up to 65 GPa using density functional theory, the space-filling polyhedral partition of the unit cell, and the static approximation. Energy-volume curves have been obtained for the spinel phase, the recently observed calcium ferrite-type and calcium titanite-type phases, and the MgO+alpha-Al2O3 mixture. Zero-pressure unit lengths and compressibilities are well described by the theoretical model, that predicts static bulk moduli about 215 GPa for all the high-pressure forms. Computed equations of state are also in good agreement with the most recent experimental data for all compounds and polymorphs considered. We do not find a continuous pressure-induced phase sequence but the static simulations predict that the oxide mixture, the ferrite phase, and the titanite phase become more stable than the spinel form at 15, 35, and 62 GPa, respectively. A microscopic analysis in terms of polyhedral and bond compressibilities leads to identify the ionic displacements accompanying the phase transformations and to an appealing interpretation of the spinel response to compression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据