4.6 Article

Near-infrared transmission spectroscopy of aqueous solutions: Influence of optical pathlength on signal-to-noise ratio

期刊

APPLIED SPECTROSCOPY
卷 56, 期 12, 页码 1600-1606

出版社

SOC APPLIED SPECTROSCOPY
DOI: 10.1366/000370202321115878

关键词

near-infrared spectroscopy; FT-NIR; instrument configuration; transmission; optimal pathlength; scattering; detector saturation

向作者/读者索取更多资源

The optimal choice of optical pathlength, source intensity, and detector for near-infrared transmission measurements of trace components in aqueous solutions depends on the strong absorption of water. In this study we examine under which experimental circumstances one may increase the pathlength to obtain a measurement with higher signal-to-noise ratio. The noise level of measurements at eight different pathlengths from 0.2 to 2.0 mm of pure water and of 1 g/dL aqueous glucose signals were measured using a Fourier transform near-infrared spectrometer and a variable pathlength transmission cell. The measurements demonstrate that the noise level is determined by the water transmittance. The noise levels in the spectral region from 5000 to 4000 cm(-1) show that the optimal pathlength (0.4 mm) is the same for pure water and 1 g/dL aqueous glucose solutions. When detector saturation occurs it is favorable to increase the pathlength instead of attenuating the light source. The obtained results are explained by an analytical model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据