4.5 Article

A novel dynamic load balancing scheme for parallel systems

期刊

JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING
卷 62, 期 12, 页码 1763-1781

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/S0743-7315(02)00008-4

关键词

dynamic load balancing; adaptive mesh refinement; parallel systems

向作者/读者索取更多资源

Adaptive mesh refinement (AMR) is a type of multiscale algorithm that achieves high resolution in localized regions of dynamic, multidimensional numerical simulations. One of the key issues related to AMR is dynamic load balancing (DLB), which allows large-scale adaptive applications to run efficiently on parallel systems. In this paper, we present an efficient DLB scheme for structured AMR (SAMR) applications. This scheme interleaves a grid-splitting technique with direct grid movements (e.g., direct movement from an overloaded processor to an underloaded processor), for which the objective is to efficiently redistribute workload among all the processors so as to reduce the parallel execution time. The potential benefits of our DLB scheme are examined by incorporating our techniques into a SAMR cosmology application, the ENZO code. Experiments show that by using our scheme, the parallel execution time can be reduced by up to 57% and the quality of load balancing can be improved by a factor of six, as compared to the original DLB scheme used in ENZO. (C) 2002 Elsevier Science (USA). All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据