4.3 Article

Numerical study of the flow around a cylinder using multi-particle collision dynamics

期刊

EUROPEAN PHYSICAL JOURNAL E
卷 9, 期 5, 页码 477-485

出版社

SPRINGER
DOI: 10.1140/epje/i2002-10107-0

关键词

-

向作者/读者索取更多资源

A novel mesoscopic simulation technique -multi-particle collision dynamics- which has been suggested very recently, is used to study the two-dimensional flow around a square and a circular cylinder. The method is described and new proper boundary conditions are proposed to deal with wall collisions. The flow is analyzed in a wide range of Reynolds numbers in order to cover both the steady and unsteady regimes, resulting in symmetric steady vortices and periodic vortex shedding, respectively. The numerical results for integral flow parameters, such as the recirculation length, the drag and lift coefficients, the Strouhal number, as well as the spatial dependence of the velocity field, are compared with previous numerical and experimental studies. The qualitative and quantitative agreement is very good, validating the method as a promising technique to describe the hydrodynamic effects of solvent on embedded particles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据